课程设计

学号:1342401006

姓名:朱良久

班级:13 通信

一,	设	计实现的功能2
	1.	状态 12
	2.	状态 2
	3.	状态 32
	4.	状态 42
	5.	状态 12
	6.	状态 22
二、	器	件的功能及引脚图2
	1,	单片机 AT89S51
Α		
Α		74LS47
Α	2,	
Α	2, 3, 1	74LS475
A	2, 3, 3, 4, 4, 3	74LS47
	2、 3、 4、 电	74LS47
三、	2、 3、 4、 电 软	74LS47
三、四、	2、 3、 4、 电 软 己	74LS47 5 LM7805 6 数码管 7 路原理图 7 件设计流程图 8

系统实验报告

一、 设计实现的功能

*时钟(计时器)

- 1. 状态 1: 一只数码管 0-9 计数, 一只按键控制开始、结束;
- 2. 状态 2: 二只数码管 0-59 计数, 一只按键控制开始、结束;
- 3. 状态 3: 三只数码管低二位 0-59 计数后进位给高位 0-9 计数,一只按键控制开始、结束;
- 4. 状态 4: 四只数码管低二位 0-59 计数后进位给高二位 0-59 计数 (即分秒计时),一只按键控制开始、结束;

*交通灯

- 5. 状态 1: 仅灯亮,数码管不工作;按下键,红、黄、绿三色灯 交替亮:红(20s)→黄(闪烁 5s)→绿(20s)→红。
- 6. 状态 2: 灯和数码管相结合,模拟十字路口的交通灯,在以上功能的基础上数码管倒计时显示时间。

二、器件的功能及引脚图

实验器件:单片机 AT89S51、集成块 74LS47、LM7805、数码管 4 只、发光二极管 6 只、稳压源、按键 4 个、电阻、排阻、三极管、电容。

1、 单片机 AT89S51

功能: AT89S51 具有如下特点: 40 个引脚, 4kBytesFlash 片内程序存储器, 128bytes 的随机存取数据存储器 (RAM), 32 个外部双向输入/输出 (I/0) 口, 5 个中断优先级 2 层中断嵌套中断, 2 个 16 位可编程定时计数器, 2 个全双工串行通信口, 看门狗 (WDT) 电路, 片内时钟振荡器。此外, AT89S51 设计和配置了振荡频率可为 0Hz 并可通过软件设置

省电模式。空闲模式下,CPU 暂停工作,而 RAM 定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存 RAM 的数据,停止芯片其它功能直至外中断激活或硬件复位。同时该芯片还具有 PDIP、TQFP 和 PLCC 等三种封装形式,以适应不同产品的需求。

引脚: VCC: 供电电压。

GND: 接地。

P0口: P0口为一个8位漏级开路双向 I/0口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。

P1口: 〈/strong〉P1口是一个内部提供上拉电阻的8位双向I/0口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为第八位地址接收。

P2口: 〈/strong〉P2口为一个内部上拉电阻的8位双向I/0口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写"1"时,其管脚被内部上拉电阻拉高,且作为输入。并因此作为输入时,P2口的管脚被外部拉低,将输出电流。这是由于内部上拉的缘故。P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。在给出地址"1"时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。P2口在FLASH编程和校验时接收高八位地址信号和控制信号。

P3 口: P3 口管脚是 8 个带内部上拉电阻的双向 I/0 口,可接收输出 4 个 TTL 门电流。当 P3 口写入"1"后,它们被内部上拉为高

电平,并用作输入。作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。P3.0RXD(串行输入口)P3.1TXD(串行输出口)P3.2/INT0(外部中断 0)P3.3/INT1(外部中断 1)P3.4T0(记时器 0 外部输入)P3.5T1(记时器 1 外部输入)P3.6/WR(外部数据存储器写选通)P3.7/RD(外部数据存储器读选通)P3口同时为闪烁编程和编程校验接收一些控制信号。

I/O: 口作为输入口时有两种工作方式即所谓的读端口与读引脚 读端口时实际上并不从外部读入数据而是把端口锁存器的内容读入 到内部总线经过某种运算或变换后再写回到端口锁存器只有读端口 时才真正地把外部的数据读入到内部总线上面图中的两个三角形表 示的就是输入缓冲器 CPU 将根据不同的指令分别发出读端口或读引 脚信号以完成不同的操作这是由硬件自动完成的不需要我们操心 1 然后再实行读引脚操作否则就可能读入出错为什么看上面的图如果 不对端口置 1 端口锁存器原来的状态有可能为 00 端为 00 为 1 加到 场效应管栅极的信号为1该场效应管就导通对地呈现低阻抗,此时即 使引脚上输入的信号为1也会因端口的低阻抗而使信号变低使得外 加的1信号读入后不一定是1若先执行置1操作则可以使场效应管 截止引脚信号直接加到三态缓冲器中实现正确的读入由于在输入操 作时还必须附加一个准备动作所以这类 I/0 口被称为准双向口 89C51的 P0/P1/P2/P3 口作为输入时都是准双向口接下来让我们再 看另一个问题从图中可以看出这四个端口还有一个差别除了 P1 口外 POP2P3 口都还有其他的功能

RST: 复位输入。当振荡器复位器件时,要保持 RST 脚两个机器周期的高电平时间。

ALE/PROG: 当访问外部存储器时,地址锁存允许的输出电平用于锁存地址的地位字节。在 FLASH 编程期间,此引脚用于输入编程脉冲。在平时,ALE 端以不变的频率周期输出正脉冲信号,此频率为振荡器频率的 1/6。因此它可用作对外部输出的脉冲或用于定时目的。然而要注意的是:每当用作外部数据存储器时,将跳过一个ALE 脉冲。如想禁止 ALE 的输出可在 SFR8EH 地址上置 0。此时,ALE

只有在执行 MOVX, MOVC 指令是 ALE 才起作用。另外, 该引脚被略微 拉高。如果微处理器在外部执行状态 ALE 禁止,置位无效。

/PSEN: 外部程序存储器的选通信号。在由外部程序存储器取指 期间,每个机器周期两次/PSEN有效。但在访问外部数据存储器时, 这两次有效的/PSEN 信号将不出现。

/EA/VPP: 当/EA 保持低电平时,则在此期间外部程序存储器 (0000H-FFFFH),不管是否有内部程序存储器。注意加密方式1时, /EA 将内部锁定为 RESET: 当/EA 端保持高电平时,此间内部程序存 储器。在FLASH编程期间,此引脚也用于施加12V编程电源(VPP)。

XTAL1: 反向振荡放大器的输入及内部时钟工作电路的输入。

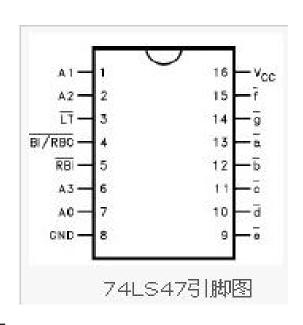
XTAL2:来自反向振荡器的输出。

PDIP 40 D VCC 39 D P0.0 (AD0) (T2) P1.0 D (T2 EX) P1.1 2 P1.2 3 38 PO.1 (AD1) 37 P0.2 (AD2) 36 P0.3 (AD3) P1.3 (MOSI) P1.5 6 35 P0.4 (AD4) (MISO) P1.6 D 34 P0.5 (AD5) 33 P0.6 (AD6) (SCK) P1.7 8 32 D P0.7 (AD7) 31 D EA/VPP 30 D ALE/PROG 29 D PSEN RST 0 9 (RXD) P3.0 10 (TXD) P3.1 11 (INT0) P3.2 12 (INT1) P3.3 13 28 P2.7 (A15) 27 P2.6 (A14) 26 P2.5 (A13) 25 P2.4 (A12) 24 P2.3 (A11) 23 P2.2 (A10) (T0) P3.4 [14 (T1) P3.5 15 (WR) P3.6 16 (RD) P3.7 D 17 XTAL2 18 XTAL1 19 22 P2.1 (A9) 21 P2.0 (A8)

Pin Configurations

Α

GND 20

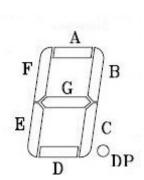

2, 74LS47

功能: 译码器的逻辑功能是将每个输入的二进制代码译成对应 的输出的高、低电平信号。常用的译码器电路有二进制译码器、二--十进制译码器和显示译码器。译码为编码的逆过程。它将编码时赋 予代码的含义"翻译"过来。实现译码的逻辑电路成为译码器。译

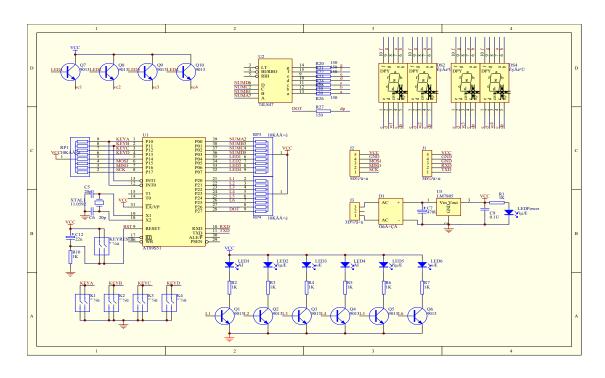
码器输出与输入代码有唯一的对应关系。74LS47 是输出低电平有效的七段字形译码器,它在这里与数码管配合使用,表 2.1 列出了74LS47 的真值表,表示出了它与数码管之间的关系。

引脚: (1)LT(——): 试灯输入,是为了检查数码管各段是否能正常发光而设置的。当LT(——)=0时,无论输入A3,A2,A1,A0为何种状态,译码器输出均为低电平,也就是七段将全亮,若驱动的数码管正常,是显示 8。

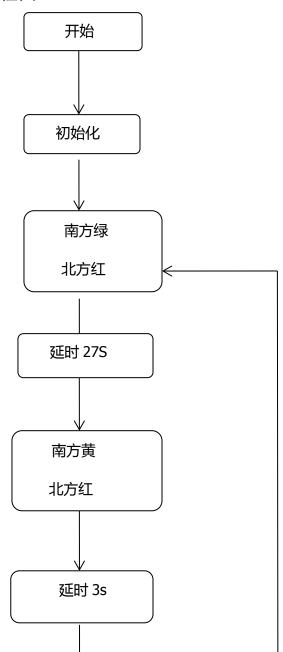
- (2)BI(一): 灭灯输入,是为控制多位数码显示的灭灯所设置的。当BI(一)=0时,不论LT(——)和输入A3,A2,A1,A0为何种状态,译码器输出均为高电平,使共阳极数码管熄灭。
- (3) RBI(——): 灭零输入,它是为使不希望显示的 0 熄灭而设定的。当对每一位 A3= A2 =A1 =A0=0 时,本应显示 0,但是在 RBI(———)=0 作用下,使译码器输出全为高电平。其结果和加入灭灯信号的结果一样,将 0 熄灭。
- (4) RBO(———): 灭零输出,它和灭灯输入 BI(—)共用一端,两者配合使用,可以实现多位数码显示的灭零控制



功能:将9V电压转化为5V直流电压


4、数码管

功能: 当数码管特定的段加上电压后,这些特定的段就会发亮,以形成我们眼睛看到的字样了。如:显示一个"2"字,那么应当是 a 亮 b 亮 g 亮 e 亮 d 亮 f 不亮 c 不亮 dp 不亮。LED 数码管有一般亮和超亮等不同之分,也有 0.5 寸、1 寸等不同的尺寸。小尺寸数码管的显示笔画常用一个发光二极管组成,而大尺寸的数码管由二个或多个发光二极管组成,一般情况下,单个发光二极管的管压降为 1.8V 左右,电流不超过 30mA。发光二极管的阳极连接到一起连接到电源正极的称为共阳数码管,发光二极管的阴极连接到一起连接到电源负极的称为共阴数码管。常用 LED 数码管显示的数字和字符是


0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F。

三、 电路原理图

四、软件设计流程图

南方红灯

五、已实现功能

按下 KEYRESET 键,数码管初始化归 0。按下 K1 后开始实现交通灯功能,DS1 和 DS2 组成南方交通灯计时,从 27s 开始。DS3 和 DS4 组成北方交通灯,从 30s 开始。南方先亮绿灯,北方亮绿灯。程序一直循环,组成了交通灯的功能。按下 K2 后交通灯暂停。

六、 调试

过程与问题

编写好程序后,编译生成 HEX 文件,选择器件 (Device) AT89S51 文件 (File) →装入文件 (Lood) →擦除 (Erase) →空检查 (Blank check) →编程 (program) →校验 (Verify) 烧录程序。

七、心得小结

本次课程设计让我学会了如何编写简单的 C 语言程序, 并再次锻炼了我的焊接电路板的能力, 使我受益良多。